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problem statement

challenge

programminggeneral sensor-basedrobot systems forcomplex tasks

complex tasks:
� combination of subtasks
� sensor feedback
� large variety of robot systems
� uncertain environments
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problem statement

current state

� reprogramming for every task
� specialist
� time consuming + expensive

our goal

development of programming support:
� non-specialists
� less time consuming
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problem statement

programming support

SYSTEMATICapproach of speci�cation of tasks

our contribution
framework with:
� systematic approach and
� estimation support for uncertain environments
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aim of presentation

aim of presentation

� to show, by means of anexample application, how framework for
`Constraint-based task speci�cation and Estimation for
Sensor-Based Robot Systems in the Presence of Geometric
Uncertainty' works and what its advantages are

� explain generic control and estimation scheme
� show application to other example tasks
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laser tracing task

Figure: simultaneous laser tracing on a plane and a barrel
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overview

introduction

framework
general principle
control and estimation scheme
task modeling

control and estimation

conclusion

example applications
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general principle

� robot task: accomplishingrelative motionand/or controlled
dynamic interactionbetweenobjects

� specify task by imposingconstraints
) task function approachor constraint-based task programming

application independent versus application dependent

� application independent:control and estimation scheme
� application dependent - but systematic:task modeling procedure
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control and estimation scheme
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Figure: general
control scheme

� plant P:
� robot system (q)
� environment

� controller C
� model update and estimationM + E
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control and estimation scheme
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Figure: general
control scheme

nomenclature:
� control input u: desired joint velocities
� system outputy: controlled variables)

task speci�cation= imposing
constraintsyd on y

� measurementsz: observe the plant
� geometric disturbances,� u

9 / 46



control and estimation scheme

conclusion

task independent derivation of
controller block and model update and estimation block

IF
speci�c task modelingprocedure is used
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task modeling

� task modeling usesTASK COORDINATES:
� two types of task coordinates:

� feature coordinates,� f ,
� uncertainty coordinates,� u .

� task coordinates de�ned in user-de�ned frames.

goal

choose frames and task coordinates in a way the task speci�cation
becomes intuitive

framework presents procedure to do this
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task modeling procedure

four steps:

1. identify objects and features and assign reference frames

2. choose feature coordinates� f

3. choose uncertainty coordinates� u

4. specify task
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STEP 1: object and feature frames

a feature is linked to an object
� physical entity

(vertex, edge, face, surface. . . )
� abstract geometric property

(symmetry axis, reference frame
of a sensor,. . . )
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STEP 1: object and feature frames

w

o1

o2

f 1

f 2

Figure: object and
feature frames and
feature coordinates

each constraint needs four frames:
� two object frames:o1 ando2,
� two feature frames:f 1 andf 2.
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STEP 1: object and feature frames

Figure: object and feature
frames laser tracing

� natural task description imposes two
motion constraints:

1. trace �gure on plane
2. trace �gure on barrel

� ) two feature relationships:

1. featurea: for the laser-plane
2. featureb: for the laser-barrel

� the objects are:

1. lasera and laserb
2. the plane
3. the barrel
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STEP 1: object and feature frames

o1a

o2a

f 1a

f 2a

object and feature frames

� for laser-plane feature:

� frame o1a �xed to plane
� frame o2a �xed to �rst laser, z-axis

along laser beam
� frame f 1a same orientation aso1a, at

intersection of laser with plane
� frame f 2a same position asf 1a and

same orientation aso2a

� for laser-barrel feature:
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STEP 1: object and feature frames

o1b

o2b

f 1b

f 2b

object and feature frames

� for laser-plane feature:

� for laser-barrel feature:

� frame o1b �xed to barrel, x-axis
along axis of barrel

� frame o2b �xed to second laser,
z-axis along the laser beam

� framef 1b at intersection of laser with
barrel, z-axis perpendicular to barrel
surface,x-axis parallel to barrel axis

� frame f 2b same position asf 1b,
same orientation aso2b
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task modeling procedure

four steps:

1. identify objects and features and assign reference frames

2. choose feature coordinates� f

3. choose uncertainty coordinates� u

4. specify task
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STEP 2: feature coordinates

w

o1

o2

f 1

f 2

q

q

� f I

� f II

� f III

Figure: object and
feature frames and
feature coordinates

� in general six degrees of freedom
betweeno1 ando2

� for every feature� f can be partitioned

� f =
�

� f I
T � f II

T � f III
T

� T
(1)
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STEP 2: feature coordinates

o1a

o2a

f 1a

f 2a

� f I
a

� f II
a

� f III
a

� laser-plane feature:

� f I
a =

�
xa ya

� T
(2)

� f II
a =

�
� a � a  a

� T
(3)

� f III
a =

�
za

�
(4)

� laser-barrel feature
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STEP 2: feature coordinates

o1b

o2b

f 1b

f 2b

� f I
b

� f II
b� f III

b

� laser-plane feature

� laser-barrel feature:

� f I
b =

�
xb � b

� T
(2)

� f II
b =

�
� b � b  b

� T
(3)

� f III
b =

�
zb

�
(4)
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task modeling procedure

four steps:

1. identify objects and features and assign reference frames

2. choose feature coordinates� f

3. choose uncertainty coordinates� u

4. specify task
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STEP 3: uncertainty coordinates

focus on two types of geometric uncertainty:
1. uncertainty pose of object, and
2. uncertainty pose of feature wrt corresponding object
uncertaintycoordinates representpose uncertainty of real frame wrt
modeled frame:

� u =
�

� uI
T � uII

T � uIII
T � uIV

T
� T

(5)

w

o10 o1

o20 o2

f 10 f 1

f 20 f 2

q

q

� f I

� f II

� f III

� uI � uII

� uIII� uIV

Figure: feature and uncertainty coordinates
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STEP 3: uncertainty coordinates

o1a

o1b

� uI
a

� uI
b

� unknown position and orientation
plane :

� uI
a =

�
ha � a � a � T

� unknown position barrel:

� uI
b =

�
xb

u yb
u

� T
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task modeling procedure

four steps:

1. identify objects and features and assign reference frames

2. choose feature coordinates� f

3. choose uncertainty coordinates� u

4. specify task
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STEP 4: task speci�cation

observation
task is easily speci�ed using task coordinates� f and � u

remember: task objective is twofold:

1. trace desired �gure on plane

2. trace desired �gure on barrel
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STEP 4: task speci�cation

observation
task is easily speci�ed using task coordinates� f and � u

o1a

o2a

f 1a

f 2a

y1

y2

z1

� output equations:

� for the plane:

y1 = xa and y2 = ya

� for the barrel
� constraint equations:

in this example the desired paths are
circles: yid (t ) ; for i = 1; : : : ;4

� measurement equations:

z1 = za and z2 = zb
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STEP 4: task speci�cation

observation
task is easily speci�ed using task coordinates� f and � u

o1b

o2b

f 1b

f 2b

y4
y3

z2

� output equations:

� for the plane
� for the barrel:

y3 = xb and y4 = � b

� constraint equations:
in this example the desired paths are
circles: yid (t ) ; for i = 1; : : : ;4

� measurement equations:

z1 = za and z2 = zb
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STEP 4: task speci�cation

observation
task is easily speci�ed using task coordinates� f and � u

o1a

o2a

f 1a

f 2a

position loop constraints:
two position loop constraints, one for
each feature relationship

� laser-plane featurea

� laser-barrel featureb
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task modeling

conclusion

� application dependent - but
systematicmodeling procedure
provided easy task speci�cation and
uncertainty modeling

� application independentcontroller
and model update and estimation
block automatically derived

) overall fast and easy task
speci�cation

P

C

M + E

u
z

y

by

yd

b� u

� u

Figure: general
control scheme
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control and estimation
equations
control law
closed loop behavior
invariant constraint weighting
model update and estimation

conclusion

example applications
24 / 46



Equations (1)

� robot system equation:relates the control inputu to the rate of
change of the robot system state:

d
dt

 
q
_q

!

= s(q; _q;u) (6)

� output equation: relates the position based outputsy to the joint
and feature coordinates:

f (q; � f ) = y (7)
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Equations (2)

� measurement equation:relates the position based measurementsz
to the joint and feature coordinates:

h (q; � f ) = z (8)

� arti�cial constraints: used to specify the task:

y = yd (9)

� natural constraints:for rigid environments:

g (q; � f ) = 0; (10)

! special case of the arti�cial constraints withyd = 0
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Equations (3)

� dependency relation betweenq and � f , perturbed by uncertainty
coordinates� u :

l (q; � f ; � u) = 0 (11)

! nonholonomic systems: replaceq by operational coordinates� q .
! derived using position closure equations) loop constraints

auxiliary coordinates

the bene�t of introducing feature coordinates� f is that they can be
chosen according to the speci�c task at hand, such that
equations (7){(10) can much be simpli�ed. A similar freedomof
choice exists for the uncertainty coordinates in equation (11)
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control law (1)

� di�erentiate output equation (7) to obtain an output equation at velocity
level:

@f
@q

_q +
@f
@� f

_� f = _y; (12)

written as:
Cq _q + Cf _� f = _y: (13)

� di�erentiate position loop constraint (11):

@l
@q

_q +
@l

@� f
_� f +

@l
@� u

_� u = 0 (14)

or:
Jq _q + Jf _� f + Ju _� u = 0 (15)
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control law (2)

� _� f solved from (15):

_� f = � Jf
� 1 �

Jq _q + Ju _� u
�

(16)

� substituting (16) into (13) yields the modi�ed output equation:

A _q = _y + B _� u (17)

whereA = Cq � Cf Jf
� 1Jq and B = Cf Jf

� 1Ju .

� plant assumed to be ideal velocity controlled system:

_q = u = _qd : (18)
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control law (3)

� Constraint equation (9) expressed at velocity level and include feedback:

_y = _yd + Kp (yd � y)
| {z }

_y �
d

(19)

� Applying constraint (19) to (17), and substituting system equation (18):

A _qd = _y �
d + B b_� u (20)

Solving for the control input_qd :

_qd = A#
W

�
_y �
d + B b_� u

�
(21)
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closed loop behavior

substituting control input (21) in system equation (18) andthen in
output equation (17), and solving for_y:

_y = AA #
W _y �

d +
�
AA #

W � 1
�

B _� u + AA #
W B

�
b_� u � _� u

�
(22)
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invariant constraint weighting

� pseudo-inverse approachto handle over- and/or underconstrained
cases

� in joint space: mass matrix of robot
� in Cartesian space,W = diag(w2

i ), with:

wi = �
1

� pi kpi
or wi = �

1
� vi

(23)

� next to weighting: levels of constraints based on nullspace
projections
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model update and estimation

goal

1. provide estimate for system outputsy used in feedback terms of
constraint equations (19)

2. provide estimate for the uncertainty coordinates� u used in control
input (21)

3. maintain consistency between joint and feature coordinates q and
� f based on the loop constraints

model update and estimation is based on an extended system model:

d
dt

0

@

q
� f
� u
_� u
•� u

1

A =

0

B
@

0 0 0 0 0
0 0 0 � Jf

� 1Ju 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1

C
A

0

@

q
� f
� u
_� u
•� u

1

A +

0

B
@

1
� Jf

� 1Jq
0
0
0

1

C
A _qd : (24)
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model update and estimation

prediction-correction procedure

� prediction
1. generate prediction based on extended system model
2. eliminate inconsistencies between predicted estimates

� correction
1. generate updated estimated based on predicted estimates and

information from sensor measurements
2. eliminate inconsistencies between predicted estimates
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conclusion (1)

conclusion

� motion speci�cation and estimation in uni�ed framework
� automatic application independent derivation of control and model

update and estimation
� application dependent - but systematic - task modeling

remark
this presentation focused on thebasicfunctionality of the framework
further generalizations include inequality constraints and motion
planning
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further reading

framework journal paper

� Constraint-Based Task Speci�cation and Estimation for Sensor-Based Robot Systems in the Presence of Geometric
Uncertainty

� Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decr�e, Ruben Smits, Erwin Aertbeli•en, Kasper Claes,
and Herman Bruyninckx

� Journal of Robotics Research, May 2007, vol. 26, no. 5, pages433{455

extended framework conference paper

� Extending iTaSC to Support Inequality Constraints and Non-Instantaneous Task Speci�cation

� Wilm Decr�e, Ruben Smits, Herman Bruyninckx, and Joris De Schutter

� Proceedings of the International Conference on Robotics and Automation, 2009, pages 964{971

THANKS FOR YOUR ATTENTION!
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overview

introduction

framework

control and estimation

conclusion

example applications
human-robot co-manipulation
mobile robot
multiple robots
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human-robot co-manipulation

o1a

o2 = f 2b = f 1b

f 1a
f 2a

Figure: the experimental setup
for the human-robot
co-manipulation task

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and feature
frames for a human-robot
co-manipulation task
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object and feature frames

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and
feature frames for a
human-robot
co-manipulation task

� natural task description imposes
three motion constraints:
� align one side of the object

according to the camera
� carry the weight and generate

downward motion to realize
desired contact force

� follow human intent

� ) two feature relationships:

� featurea : visual servoing
� featureb: force control

� the objects are:
1. the environment (or camera)
2. the object
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object and feature frames

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and
feature frames for a
human-robot
co-manipulation task

� frame o1a �xed to robot environment
(camera)

� frame o2 at center of object

� o1b �xed to o2 by a compliance

� frame f 1a at reference pose on support

� frame f 2a �xed to the object

� no force) framesf 1b and f 2b coincide
with o2,
forces) f 1b and f 2b deviate from each
other
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feature coordinates

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and
feature frames for a
human-robot
co-manipulation task

� for featurea:

� f I
a =

�
�

�
(25)

� f II
a =

�
xa ya za � a � a  a

� T
(26)

� f III
a =

�
�

�
(27)

� for featureb:

� f I
b =

�
�

�
(28)

� f II
b =

�
xb yb zb � b � b  b

� T
(29)

� f III
b =

�
�

�
(30)
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task speci�cation

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and
feature frames for a
human-robot
co-manipulation task

� output equations:

� camera:

y1 = xa; y2 = ya (25)

� contact force with support:

y3 = Fz = kzxb; y4 = Tx = k� x � b ;
y5 = Ty = k� y � b

(26)� human interaction:

y6 = Fx = kxxb; y7 = Fy = kyyb;
y8 = Tz = k� z b

(27)
� constraint equations:

� measurement equations:
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task speci�cation

f1a,b
o2=f2b

o1a

f 2a

Figure: the object and
feature frames for a
human-robot
co-manipulation task

� output equations:

� constraint equations:

y1d = 0mm; y2d = 60mm
y3d = Fzd ; y4d = 0; y5d = 0

y6d = y7d = y8d = 0
(25)

� measurement equations: in this
example all the outputs can be
measured:

zi = yi for i = 1; : : : ;8 (26)
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results
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Figure: the left plot shows the forcesFx and Fy , exerted by the operator
during the co-manipulation task. the right plot shows the alignment errors
xa and ya as measured by the camera.
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mobile robot

w = o1w = o1

XXX

YY Y

�

xb

� b

� b

xa

ya

� = � a

xc

yc

� = � c

f 1a

X

Y

f 1b

X

Y

f 2b
X

Y XX XYY Y
o2 = f 2a

o2

Featurea Featureb Featurec

o2 = f 2c

w = o1 = f 1c

Figure: left for featurea, ultrasonic sensor; middle for featureb, range
�nder; right for feature c, robot trajectory
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object and feature frames

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

� task description: move robot along a
trajectory with respect to the world
while measuring distance to a wall
with ultrasonic sensor and measuring
the distance and angle to a beacon

� ) three feature relationships:
1. featurea: ultrasonic sensor
2. featureb: range �nder
3. featurec: motion speci�cation

� the objects are:
1. mobile robot
2. environment (wall, beacon)
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object and feature frames

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

� frame o1, �xed to wall, its x-axis along
the wall

� frame o2, �xed to mobile robot

� for featurea (ultrasonic sensor):

� frame f 1a, same orientation aso1
and able to move inx direction ofo1

� frame f 2a, �xed to frame o2
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object and feature frames

w = o1

X

Y

�

xb

� b

� b

f 1b

X

Y

f 2b
X

Y XY
o2

Featureb

Figure: featureb

� frame o1, �xed to wall, its x-axis along
the wall

� frame o2, �xed to mobile robot

� for featureb (range �nder):

� frame f 1b, at the beacon location,
�xed to frame o1

� frame f 2b, x-axis is beam of range
�nder hitting the beacon
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object and feature frames

X

Y

xc

yc

� = � c

X
Y

Featurec

o2 = f 2c

w = o1 = f 1c

Figure: featurec

� frame o1, �xed to wall, its x-axis along
the wall

� frame o2, �xed to mobile robot

� for featurec (path tracking):

� frame f 1c , coinciding witho1
� frame f 2c , coinciding witho2
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feature coordinates

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

for each of the three features a minimal
set of position coordinates exists
representing the 3DOF betweeno1 and
o2:

� for featurea (ultrasonic sensor):

� f I
a =

�
xa

�
(27)

� f II
a =

�
ya � a

� T
(28)

� f III
a =

�
�

�
(29)
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feature coordinates

w = o1

X

Y

�

xb

� b

� b

f 1b

X

Y

f 2b
X

Y XY
o2

Featureb

Figure: featureb

for each of the three features a minimal
set of position coordinates exists
representing the 3DOF betweeno1 and
o2:

� for featureb (range �nder):

� f I
b =

�
�

�
(27)

� f II
b =

�
xb � b

� T
(28)

� f III
b =

�
� b

�
(29)

43 / 46



feature coordinates

X

Y

xc

yc

� = � c

X
Y

Featurec

o2 = f 2c

w = o1 = f 1c

Figure: featurec

for each of the three features a minimal
set of position coordinates exists
representing the 3DOF betweeno1 and
o2:

� for featurec (path tracking):

� f I
c =

�
�

�
(27)

� f II
c =

�
xc yc � c

� T
(28)

� f III
c =

�
�

�
(29)
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operational space robot coordinates

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

Nonholonomic robot:

� position loop constraints cannot be
written in terms ofq

� ) de�ne operational space robot
coordinates� q

� natural choice:� q = � f
c

� dependency relation between_� q and
_q is very simple: (nonholonomic
constraint)

_� q =

0

@
_xc

_yc

_� c

1

A = Jr _q (27)
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uncertainty coordinates

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

Nonholonomic robot:

� dependency relation between_� q and
_q is very simple: (nonholonomic
constraint)

_� q =

0

@
_xc

_yc

_� c

1

A = Jr _q (27)

� replaceq in (7) and (11) by � qresults
in:

Cq =
@f
@� q

Jr Jq =
@l

@� q
Jr (28)
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uncertainty coordinates

w = o1

X

Y

xa

ya

� = � a

f 1a

X

Y

X
Y

o2 = f 2a

Featurea

Figure: featurea

� the nonholonomic constraint which
may be disturbed by wheel slip:

_� q = Jr
�

_q + _qslip
�

(27)

� _qslip = s_q, with s the estimated slip
rate

� ) � uIV = qslip and from (15):
Ju = Jq
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task speci�cation
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o2 = f 2c

w = o1 = f 1c

Figure: featurec

� output equations

y1 = xc ; y2 = yc ; y3 = � c :(27)
� constraint equations:

from the desired path in terms ofxa,
ya and � a, the desired valuesy1d (t ),
y2d (t ) and y3d (t ) can be obtained

� measurement equations:

z1 = ya; z2 = xb; z3 = � b (28)
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feedback control

X

Y

xc

yc

� = � c

X
Y

Featurec

o2 = f 2c

w = o1 = f 1c

Figure: featurec

the path controller is implemented in
operation space, by applying constraints
(19) with

Kp =

0

B
@

kp 0 0
0 0 0

0 kp
2

2sign( _xc) kp

1

C
A ; (27)

and kp a feedback constant
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results

without slip:
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Figure: localization and path tracking control of a mobile robot
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results

with slip:
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on both wheels
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Figure: localization and path tracking control of a mobile robot with slip
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multiple robots with simultaneous tasks

o1a

o2

f 1af 2a

o1b = f 1b

f 2b

Figure: two robots performing simultaneous pick-and-place and painting
operations on a single work piece
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